热门搜索:
电商平台为我们提供了大量的数据,以及消费者的反馈数据,从电商平台入手我们能够同时了解到市场、产品和消费者,考虑到数据量以及用户群体的丰富性,我们选择了淘宝电商的数据作为我们的数据源。在项目中同时涉及到市场,产品和消费者,所以我们的思路是同时获取到淘宝电商平台上手机的数据以及评论数据,然后通过数据挖掘,餐饮数据挖掘智能获客,从评论中挖掘出产品的属性特征和用户特征并进行关联,从而建立起市场,餐饮数据挖掘智能获客、产品和消费者三者直接的联系,然后进行数据分析,为我们帮助客户制定品牌、产品以及价格策略提供依据,餐饮数据挖掘智能获客。为每个客户定制个性化的产品推荐序列,提高成交率并优化客户体验。餐饮数据挖掘智能获客
随着传感器、移动通信等技术的飞速发展,工业生产正朝着更高密度、更高效率的综合信息运作模式发展。许多先进的计算机系统被引入,这些系统的运行产生了海量的数据和信息资源,导致人们无法继续使用传统的生产模式。必须从各个方面和出发点进行有效的研发,引入大数据挖掘和分析技术,普遍实现工业生产的科学管理和生产设备的有效控制。目前,工业大数据挖掘与分析技术包括多种技术,常用的有K-means、BP神经网络、遗传算法和贝叶斯理论等,可以从海量交通数据中发现潜在的有价值的信息,并利用这些信息指导和创新工业生产管理模式,构建大数据挖掘系统。传统零售数据挖掘常见问题弹性成本:按需使用,不需运维、不养团队、节省高额咨询费!
但销量预测本身是一个复杂问题。大企业经常重金聘请咨询公司或雇佣分析团队,但效果往往不够理想。除技术因素外,通常还有以下两个原因:业务和数据形态千差万别。且不说不**业,即使同一连锁店的不同门店,情况也各不相同,外部分析团队往往由于不熟悉业务或数据的细节,而造成偏差;销量预测是时序预测,而时序预测是外推预测。与一般回归、分类、聚类等方法相比,外推预测是根据历史预测未来,不确定性更大。即便如此,大企业相比小企业仍有巨大优势。无数的中小企业不具备任何预测能力,在市场竞争或转型升级时都颇为被动。
随着数据采集技术和存储技术 的发展,企业建立了庞大的数据库和数据仓库,积累了大量的数据,利用这些数据辅助企业正确决策,已经成为商界的共识。然而数据的“式”增长,让一般的数据分析技术望而却步,数据挖掘便在此背景下迅速发展起来。 从技术的角度看,数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的实际应用数据中,提取潜在有用的信息和知识的过程。从商业的角度看,数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库的大量业务数据进行抽取、转换、分析和其他模型处理,从中提取出辅助商业决策的关键性知识,即发现数据中的相关商业模式。 数据挖掘融合了人工智能(artificial intelligence)、统计学(statistics)、机器学习(machinelearning)、模式识别(pattern recognition)和数据库等多种学科的理论,方法和技术。目前在金融服务机构、零售商、金融服务机构、制造业、电信公司、保险公司、医疗业、航空业、**等各个领域中取得了的应用。了解潜在客户在各营销环节中的流向和转化率。
大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等,这些方法从不同的角度对数据进行挖掘。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。基于时序预测引擎,帮您预测未来。餐饮数据挖掘智能获客
一目了然:图文并茂的报告,可直接打印并下载。餐饮数据挖掘智能获客
关键算法库为我们自研的全自动优化算法。与其它算法不同,关键算法库的算法支持全自动建模,*用户参与。算法在收到一个新任务后,会自动探测数据特征、任务类型、并自动加载优参数,然后进行建模,并将建模结果提交咨询报告渲染引擎渲染成一份咨询报告。我们的算法库智能化程度相当高,使用门槛非常低,即使用户完全不懂技术,也可以获得很好的数据挖掘结果。同时,算法库算法的精度和性能处于行业先进水平。例如,经实际验证,我们的时序预测算法比百度大脑(easyDL)快 8~10倍,精度高 3~4 倍。餐饮数据挖掘智能获客
上海暖榕智能科技有限责任公司位于联航路1588弄(浦江镇481街坊6/2丘)1幢技术中心主楼108室,拥有一支专业的技术团队。专业的团队大多数员工都有多年工作经验,熟悉行业专业知识技能,致力于发展暖榕,暖榕智能的品牌。公司以用心服务为重点价值,希望通过我们的专业水平和不懈努力,将人工智能理论与算法软件开发,大数据服务,软件即服务(SaaS),数据分析与挖掘整体解决方案,经营性互联网文化信息服务,信息系统集成和物联网技术服务,信息技术咨询服务,社会经济咨询【依法须经批准的项目,经相关部门批准后方可开展经营活动。】等业务进行到底。诚实、守信是对企业的经营要求,也是我们做人的基本准则。公司致力于打造高品质的暖榕敏捷数据挖掘系统,数据分析SaaS工具,数据挖掘解决方案。